Differential Equations

MS Thesis
  • Reger Ibrahim, Thesis title: Riemann-Louiville type FDE, M.Sc. completed: 2016
  • Ojo Gbenga Olayinka, Thesis title: Adomian's Decomposition of Multi-Order Fractional, Differential Equations, M.Sc. completed: 2016
  • Hogir Ageed Khaleel, Thesis title: On Fractional Differential Equations, M.Sc. completed: 2015
  • Abdullah Hasan Jangeer , Thesis title: Fractional Integral Inequalities of Gronwall Type, M.Sc. completed: 2015
  • Sevda Isiktas, Thesis title: Controllability of linear deterministic systems, M.Sc. completed: 1997
  • Verda Peyker, Thesis title: Linear retarded differential equations, M.Sc. completed: 2000
  • Ceren Mirillo, Thesis title: Linear retarded differential equations, M.Sc. completed: 2004
  • Umut Yolsal, Thesis title: The Gauge Integral, MSc completed: 2004
  • Mustafa Kara, Thesis title: The Calculus of Time Scales, M.Sc. completed: 2005
  • Benan Gencsu, Thesis title: Inequalities on Time Scales, M.Sc. completed: 2005
  • Havva Kafaoglu, Thesis title: Differential Equations on Time Scales, M.Sc. completed: 2006
PhD Thesis
  • SEDEF SULTAN EMIN, Thesis Title: Existence Results for Boundary Value Problems of Fractional Type, Differential Equations, Ph.D. completed in June 2019, EMU
  • AREEN SABER SALAH AL-KHATEEB, Thesis Title: Stability, Existence and Uniqueness of Boundary Value Problems for a Coupled System of Fractional Differential Equations, Ph.D. completed in June 2019, EMU
  • SAMEER HASSAN SALEEH BAWA`NEH, Thesis Title: Computational Numerical Solution Algorithm for Fractional Differential Equations, Ph.D. completed in June 2019, EMU
  • Muath Awadalla, Thesis Title: Fractional Differential Equations with Fractional Boundary Conditions, Ph.D. completed in February 2018, EMU
  • Bilal Sami, Thesis Title: Fractional Differential Equations with Fractional Boundary Conditions, Ph.D. completed in February 2018, EMU
  • Helal Mahmoud, Thesis Title: Fractional Differential Equations with Fractional Boundary Conditions, Ph.D. completed in June 2016, EMU
  • Mohammad Momenzadeh, Thesis Title: A Comprehensive Study On q-Polynomials, Ph.D. completed in February 2016, EMU
  • Sinem Unul, Thesis Title: On a Class Fractional Differential Equations, Ph.D. completed in February 2016, EMU
  • Marzieh Eini Keleshteri, Thesis Title: Comprehensive Study On The Class Of q-Appell Polynomials, Ph.D. completed in July 2015, EMU
  • Afet Oneren, Thesis Title: Q-polynomials, Ph.D. completed in October 2014, EMU
  • Mustafa Kara, Thesis Title: Generalized Kantorovich type Operators, Ph.D. completed in January 2011, EMU
  • Havva Kaffaoglu, Thesis Title: Phillips type Operators Based on q-integers, Ph.D. completed in May 2011, EMU
  • Pembe Sabancigil,  Thesis Title: Bernstein type Operators Based on q-integers, Ph.D. completed in May 2009, EMU
  • Muhammed Mattar, Thesis Title: Controllability of Backward Equations, Ph.D. completed in June 2005, EMU
  • Sonuc Zorlu, Thesis Title: Controllability of Stochastic Systems, Ph.D. completed in May 2003, EMU
  • Ali Denker, Thesis Title: Controllability concepts for stochastic control systems, Ph.D. completed in May 2002, EMU
Publications

Journal Papers_indexed in SCI 

  • NI Mahmudov, Necessary First-Order and Second-Order Optimality Conditions in DiscreteTime Stochastic Systems, Journal of Optimization Theory and Applications 2019-09-14 | journalarticle DOI: 10.1007/s10957-019-01478-y
  • NI Mahmudov, A novel fractional delayed matrix cosine and sine Applied Mathematics Letters 2019-06 | journal-article DOI: 10.1016/j.aml.2019.01.001
  • NI Mahmudov, Representation of solutions of discrete linear delay systems with non permutable matrices Applied Mathematics Letters 2018, 85, 8-14
  • Mahmudov, N. I. Asymptotic properties of powers of linear positive operators which preserve e2. Comput. Math. Appl. 62 (2011), no. 12, 4568–4575.
  • Sakthivel, R.; Ren, Yong; Mahmudov, N. I. On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 62 (2011), no. 3, 1451–1459.
  • Mahmudov, N. I. q-Szász-Mirakjan operators which preserve x2. J. Comput. Appl. Math. 235 (2011), no. 16, 4621–4628.
  • Mahmudov, N. I. Approximation by Bernstein-Durrmeyer-type operators in compact disks. Appl. Math. Lett. 24 (2011), no. 7, 1231–1238.
  • Mahmudov, N. I., Approximation properties of complex q-Szász-Mirakjan operators in compact disks. Comput. Math. Appl. 60 (2010), no. 6,1784–1791.
  • Mahmudov, N. I., Convergence properties and iterations for q-Stancu polynomials in compact disks. Comput. Math. Appl. 59 (2010), no. 12, 3763–3769.
  • Mahmudov, N. I., Approximation theorems for certain positive linear operators. Appl. Math. Lett. 23 (2010), no. 7, 812–817.
  • Sakthivel, R.; Mahmudov, N. I.; Lee, Sang-Gu Controllability of non-linear impulsive stochastic systems. Internat. J. Control 82 (2009), no. 5, 801--807.
  • Sakthivel, R.; Mahmudov, N. I.; Kim, J. H. On controllability of second order nonlinear impulsive differential systems. Nonlinear Anal. 71 (2009), no. 1-2, 45--52.
  • Mahmudov, Nazim I. Approximate controllability of evolution systems with nonlocal conditions. Nonlinear Anal. 68 (2008), no. 3, 536--546.
  • Mahmudov, N. I.; McKibben, M. A. On backward stochastic evolution equations in Hilbert spaces and optimal control. Nonlinear Anal. 67 (2007), no. 4, 1260--1274.
  • Bashirov, A. E.; Mahmudov, N.; \c Semi, N.; Etikan, H. Partial controllability concepts. Internat. J. Control 80 (2007), no. 1, 1--7.
  • Dauer, J. P.; Mahmudov, N. I.; Matar, M. M. Approximate controllability of backward stochastic evolution equations in Hilbert spaces. J. Math. Anal. Appl. 323 (2006), no. 1, 42--56.
  • Mahmudov, N. I.; Zorlu, S. Controllability of semilinear stochastic systems. Internat. J. Control 78 (2005), no. 13, 997--1004.
  • Dauer, J. P.; Mahmudov, N. I. Integral inequalities and mild solutions of semilinear neutral evolution equations. J. Math. Anal. Appl. 300 (2004), no. 1, 189--202.
  • Dauer, J. P.; Mahmudov, N. I. Controllability of some nonlinear systems in Hilbert spaces. J. Optim. Theory Appl. 123 (2004), no. 2, 319--329.
  • Dauer, J. P.; Mahmudov, N. I. Exact null controllability of semilinear integrodifferential systems in Hilbert spaces. J. Math. Anal. Appl. 299 (2004), no. 2, 322--332.
  • Dauer, J. P.; Mahmudov, N. I. Controllability of stochastic semilinear functional differential equations in Hilbert spaces. J. Math. Anal. Appl. 290 (2004), no. 2, 373--394.
  • Mahmudov, Nazim I. Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control Optim. 42 (2003), no. 5, 1604--1622.
  • Mahmudov, Nazim I. Controllability of semilinear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 288 (2003), no. 1, 197--211.
  • Mahmudov, N. I.; Zorlu, S. Controllability of non-linear stochastic systems. Internat. J. Control 76 (2003), no. 2, 95--104.
  • Dauer, J. P.; Mahmudov, N. I. Approximate controllability of semilinear functional equations in Hilbert spaces. J. Math. Anal. Appl. 273 (2002), no. 2, 310--327.
  • Mahmudov, Nazim I. Controllability of linear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 259 (2001), no. 1, 64--82.
  • Mahmudov, Nazim Idrisoglu Controllability of linear stochastic systems. IEEE Trans. Automat. Control 46 (2001), no. 5, 724--731.
  • Mahmudov, N. I.; Denker, A. On controllability of linear stochastic systems. Internat. J. Control 73 (2000), no. 2, 144--151.
  • Bashirov, Agamirza E.; Mahmudov, Nazim I. On concepts of controllability for deterministic and stochastic systems. SIAM J. Control Optim. 37 (1999), no. 6, 1808--1821 (electronic).

Journal Papers in SCIE 

  • NI Mahmudov, Delayed perturbation of Mittag‐Leffler functions and their applications to fractional linear delay differential equations, Mathematical Methods in the Applied Sciences 2019-11-15 | journal-article DOI: 10.1002/mma.5446
  • NI Mahmudov, S Emin, Fractional-order boundary value problems with Katugampola fractional integral conditions, Advances in Difference Equations 2018 (1), 81
  • NI Mahmudov, Partial-approximate controllability of nonlocal fractional evolution equations via approximating method Applied Mathematics and Computation 334, 227-238
  • NI Mahmudov, Finite-approximate controllability of fractional evolution equations: variational approach Fractional Calculus and Applied Analysis 21 (4), 919-93
  • SG Gal, NI Mahmudov, BD Opris, Approximation with an Arbitrary Order by Szasz, SzaszKantorovich and Baskakov Complex Operators in Compact Disks Azerbaijan Journal of Mathematics-Print ISSN: 2218-6816, Online ISSN: 2221
  • NI Mahmudov, M Awadalla, K Abuassba, Nonlinear sequential fractional differential equations with nonlocal boundary conditions Advances in Difference Equations 2017 (1), 319
  • NI Mahmudov, H Mahmoud, Four-point impulsive multi-orders fractional boundary value problems J. Comput. Anal. Appl 22 (7), 1249-1260
  • NI Mahmudov, R Murugesu, C Ravichandran, V Vijayakumar, Approximate controllability results for fractional semilinear integro-differential inclusions in Hilbert spaces Results in Mathematics 71 (1-2), 45-61
  • N Mahmudov, MM Matar, EXISTENCE OF MILD SOLUTION FOR HYBRID DIFFERENTIAL EQUATIONS WITH ARBITRARY FRACTIONAL ORDER TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS 8 (2), 160-169
  • NI Mahmudov, Finite-approximate controllability of evolution equations, Appl. Comput. Math 16 (2), 159-167
  • R Sakthivel, Y Ren, A Debbouche, NI Mahmudov Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions Applicable Analysis 95 (11), 2361-2382
  • NI Mahmudov, V Vijayakumar, R Murugesu, Approximate controllability of second-order evolution differential inclusions in Hilbert spaces Mediterranean Journal of Mathematics 13 (5), 3433-3454
  • N Mahmudov, Approximation Properties of the q-Balázs–Szabados Complex Operators in the Case q≥1, Computational Methods and Function Theory 16 (4), 567–583
  • NI Mahmudov, MA Mckibben, ON APPROXIMATELY CONTROLLABLE SYSTEMS Appl. Comput. Math 15 (3), 247-264
  • MJ Mardanov, NI Mahmudov, YA Sharifov, Existence and uniqueness results for q-fractional difference equations with p-Laplacian operators Advances in Difference Equations 2015 (1), 185
  • NI Mahmudov, M Kara, Approximation properties of weighted Kantorovich type operators in compact disks Journal of Inequalities and Applications 2015 (1), 46
  • Mardanov, Misir J; Malik, Samin T; Mahmudov, Nazim I; On the theory of necessary optimality conditions in discrete systems. Adv. Difference Equ. 2015, 2015:28.
  • Mahmudov, Nazim I; Kara, Mustafa; Approximation properties of weighted Kantorovich type operators in compact disks. J. Inequal. Appl. 2015, 2015:46.
  • Mahmudov, Nazim I. Difference equations of q-Appell polynomials. Appl. Math. Comput. 245 (2014), 539–543
  • Ganesh, Ramakrishnan; Sakthivel, Rathinasamy; Mahmudov, Nazim I. Approximate controllability of fractional functional equations with infinite delay. Topol. Methods Nonlinear Anal. 43 (2014), no. 2, 345–364.
  • Mahmudov, N. I.; Unul, S. Existence of solutions of α∈(2,3]order fractional three-point boundary value problems with integral conditions. Abstr. Appl. Anal. 2014, Art. ID 198632, 12 pp.
  • Mahmudov, Nazim I.; Keleshteri, Marzieh Eini q-extensions for the Apostol type polynomials. J. Appl. Math. 2014, Art. ID 868167, 8 pp.
  • Mahmudov, N. I.; Momenzadeh, M. On a class of q-Bernoulli, q-Euler, and q-Genocchi polynomials. Abstr. Appl. Anal. 2014, Art. ID 696454, 10 pp.
  • Mahmudov, N. I.; Gupta, Vijay Approximation by complex q-Durrmeyer polynomials in compact disks. Acta Math. Appl. Sin. Engl. Ser. 30 (2014),no. 1, 65–74.
  • Mahmudov, N. I.; Akkeleş, A.; Öneren, A. On a class of two dimensional (w,q)-Bernoulli and (w,q)-Euler polynomials: properties and location of zeros. J. Comput. Anal. Appl. 16 (2014), no. 2, 282–292.
  • Gal, Sorin G.; Mahmudov, Nazim I.; Kara, MustafaApproximation by complex q-SzászKantorovich operators in compact disks, q>1.Complex Anal. Oper. Theory 7 (2013), no. 6, 1853–1867.
  • Mahmudov, Nazim Idrisoglu q-Szász operators which preserve x2. Math. Slovaca 63 (2013), no.5, 1059–1072.
  • Ganesh, R.; Sakthivel, R.; Ren, Yong; Anthoni, S. M.;Mahmudov, N. I. Controllability of neutral fractional functional equations with impulses and infinite delay. Abstr. Appl. Anal. 2013, Art. ID 901625, 12 pp.
  • Mahmudov, N. I. Asymptotic properties of iterates of certain positive linear operators. Math. Comput. Modelling 57 (2013), no. 5-6, 1480–1488.
  • Mahmudov, N. I.; Zorlu, S. Approximate controllability of fractional integro-differential equations involving nonlocal initial conditions. Bound. Value Probl. 2013, 2013:118, 16 pp.
  • Mahmudov, Nazim I.; Keleshteri, M. Eini On a class of generalized q-Bernoulli and q-Euler polynomials. Adv. Difference Equ. 2013,2013:115, 10 pp.
  • Mahmudov, N. I.; Kara, M. Approximation theorems for complex Szász-Kantorovich operators. J. Comput. Anal. Appl. 15 (2013), no. 1, 32–38.
  • Ganesh, R.; Sakthivel, R.; Mahmudov, N. I.; Anthoni, S. M.Approximate controllability of fractional integrodifferential evolution equations. J. Appl. Math. 2013, Art. ID 291816, 7 pp.
  • Mahmudov, Nazim I. On a class of q-Bernoulli and q-Euler polynomials. Adv. Difference Equ. 2013,2013:108, 11 pp.
  • Mahmudov, N. I. Approximate controllability of fractional Sobolev-type evolution equations in Banach spaces. Abstr. Appl. Anal. 2013, Art. ID 502839, 9 pp.
  • Sakthivel, R.; Revathi, P.; Mahmudov, N. I. Asymptotic stability of fractional stochastic neutral differential equations with infinite delays.Abstr. Appl. Anal. 2013, Art. ID 769257, 9 pp.
  • Mahmudov, N. I.; Şemi, N. Approximate controllability of semilinear control systems in Hilbert spaces. TWMS J. Appl. Eng. Math. 2 (2012), no. 1, 67–74.
  • Mahmudov, N. I. Approximation by the q-Szász-Mirakjan operators. Abstr. Appl. Anal. 2012, Art. ID 754217, 16 pp.
  • Mahmudov, Nazim I. Approximation properties of bivariate complex q-Bernstein polynomials in the case q>1. Czechoslovak Math. J. 62(137)(2012), no. 2, 557–566.
  • Mahmudov, N. I. q-analogues of the Bernoulli and Genocchi polynomials and the SrivastavaPintér addition theorems. Discrete Dyn. Nat. Soc.2012, Art. ID 169348, 8 pp.
  • Mahmudov, Nazim; Gupta, Vijay; Kaffaoğlu, Havva On certainq-Phillips operators. Rocky Mountain J. Math. 42 (2012), no. 4, 1291–1312.
  • Mahmudov, N. I.; Kara, M. Approximation theorems for generalized complex Kantorovich-type operators. J. Appl. Math. 2012, Art. ID 454579, 14 pp.
  • Mahmudov, Nazim Idrisoglu; Sabancigil, Pembe Voronovskaja type theorem for the Lupaş qanalogue of the Bernstein operators. Math. Commun.17 (2012), no. 1, 83–91.
  • Sakthivel, R.; Mahmudov, N. I.; Nieto, Juan. J. Controllability for a class of fractional-order neutral evolution control systems. Appl. Math. Comput.218 (2012), no. 20, 10334–10340.
  • Mahmudov, N. I.; Gupta, Vijay Approximation by genuine Durrmeyer-Stancu polynomials in compact disks. Math. Comput. Modelling 55(2012), no. 3-4, 278–285.
  • Gal, Sorin G.; Gupta, Vijay; Mahmudov, Nazim I.Approximation by a complex q-Durrmeyer type operator. Ann. Univ. Ferrara Sez. VII Sci. Mat. 58 (2012), no. 1, 65–87.
  • Mahmudov, Nazim; Sabancigil, Pembe A q-analogue of the Meyer-König and Zeller operators. Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1,39–51.
  • Mahmudov, Nazim Idrisoglu; Özarslan, Mehmet Ali;Sabancigil, Pembe I-approximationproperties of certain class of linear positive operators. Studia Sci. Math. Hungar. 48 (2011), no. 2, 205–219.
  • Mahmudov, Nazim; Gupta, Vijay On certain q-analogue of Szász Kantorovich operators. J. Appl. Math. Comput. 37 (2011), no. 1-2, 407–419.
  • Mahmudov, N. I. Higher order limit q-Bernstein operators. Math. Methods Appl. Sci. 34 (2011), no. 13, 1618–1626.
  • Sakthivel, R.; Mahmudov, N. I.; Ren, Yong Approximate controllability of the nonlinear thirdorder dispersion equation. Appl. Math. Comput.217 (2011), no. 21, 8507–8511.
  • Mahmudov, N. I. Approximation by genuine q-Bernstein-Durrmeyer polynomials in compact disks. Hacet. J. Math. Stat. 40 (2011),no. 1, 77–89.
  • Özarslan, M. Ali; Duman, Oktay; Mahmudov, N. I. Local approximation properties of modified Baskakov operators. Results Math. 59 (2011),no. 1-2, 1–11.
  • Sakthivel, R.; Nieto, Juan J.; Mahmudov, N. I. Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay. Taiwanese J. Math. 14 (2010), no. 5, 1777–1797.
  • Mahmudov, N. I., Approximation properties of complex q-Szász-Mirakjan operators in compact disks. Comput. Math. Appl. 60 (2010), no. 6,1784–1791.
  • Mahmudov, N. I., Convergence properties and iterations for q-Stancu polynomials in compact disks. Comput. Math. Appl. 59 (2010), no. 12, 3763–3769.
  • Mahmudov, N. I., Statistical approximation of Baskakov and Baskakov-Kantorovich operators based on the q-integers. Cent. Eur. J. Math. 8(2010), no. 4, 816–826.
  • Mahmudov, N. I.; Sabancigil, P., On genuine q-Bernstein-Durrmeyer operators. Publ. Math. Debrecen 76 (2010), no. 3-4, 465–479.
  • Mahmudov, N. I.; Kaffaoǧlu, H., On q-Szász-Durrmeyer operators. Cent. Eur. J. Math. 8 (2010), no. 2, 399–409.
  • Mahmudov, N. I., The moments for q-Bernstein operators in the case 0<q<1. Numer. Algorithms 53 (2010), no. 4, 439–450.
  • Mahmudov, N. I.; Sabancigil, P., Some approximation properties of q-parametric BBH operators, Journal of Computational Analysis and Applications, vol. 12, no. 1, pp. 111–123, 2010.
  • Sakthivel, R.; Mahmudov, N. I.; Lee, Sang-Gu Controllability of non-linear impulsive stochastic systems. Internat. J. Control 82 (2009), no. 5, 801--807.
  • Mahmudov, Nazim I. Korovkin-type theorems and applications. Cent. Eur. J. Math. 7 (2009), no. 2, 348--356.
  • Sakthivel, R.; Anandhi, E. R.; Mahmudov, N. I. Approximate controllability of second-order systems with state-dependent delay. Numer. Funct. Anal. Optim. 29 (2008), no. 11-12, 1347-1362.
  • Mahmudov, N. I.; Sabancigil, P. q-parametric Bleimann Butzer and Hahn operators. J. Inequal. Appl. 2008, Art. ID 816367, 15 pp.
  • Samoilenko, A. M.; Mahmudov, N. I.; Stanzhitskii, A. N. Existence, uniqueness, and controllability results for neutral FSDES in Hilbert spaces. Dynam. Systems Appl. 17 (2008), no.1, 53--70.
  • Sakthivel, R.; Mahmudov, N. I.; Nieto, Juan. J.; Kim, J. H. On controllability of nonlinear impulsive integrodifferential systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 15 (2008), no. 3, 333--343.
  • Mahmudov, Nazim I. Approximate controllability of evolution systems with nonlocal conditions. Nonlinear Anal. 68 (2008), no. 3, 536--546.
  • Mahmudov, Nazim I.; McKibben, Mark A. On a class of backward McKean-Vlasov stochastic equations in Hilbert space: existence and convergence properties. Dynam. Systems Appl. 16 (2007), no. 4, 643--664.
  • Samoilenko, A. M.; Mahmudov, N. I.; Stanzhitskii, A. N. The averaging method and two-sided bounded solutions of stochastic Itô systems. (Russian) Differ. Uravn. 43 (2007), no. 1, 52--63,142.
  • Sakthivel, R.; Mahmudov, N. I.; Kim, J. H. Approximate controllability of nonlinear impulsive differential systems. Rep. Math. Phys. 60 (2007), no. 1, 85--96.
  • Bashirov, A. E.; Mahmudov, N.; \c Semi, N.; Etikan, H. Partial controllability concepts. Internat. J. Control 80 (2007), no. 1, 1--7.
  • Sakthivel, R.; Kim, J.-H.; Mahmudov, N. I. On controllability of nonlinear stochastic systems. Rep. Math. Phys. 58 (2006), no. 3, 433--443.
  • Mahmudov, N. I.; McKibben, M. A. Approximate controllability of second-order neutral stochastic evolution equations. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 13 (2006), no. 5, 619--634.
  • Mahmudov, N. I.; McKibben, M. A. Abstract second-order damped McKean-Vlasov stochastic evolution equations. Stoch. Anal. Appl. 24 (2006), no. 2, 303--328.
  • Mahmudov, N. I. Existence and uniqueness results for neutral SDEs in Hilbert spaces. Stoch. Anal. Appl. 24 (2006), no. 1, 79--95.
  • Dauer, J. P.; Mahmudov, N. I. Remark on existence result for second order evolution equations in Banach spaces. Int. J. Pure Appl. Math. 12 (2004), no. 4, 471--482.
  • Dauer, J. P.; Mahmudov, N. I. Controllability of stochastic semilinear functional differential equations in Hilbert spaces. J. Math. Anal. Appl. 290 (2004), no. 2, 373--394.
  • Mahmudov, Nazim Controllability and observability of linear stochastic systems in Hilbert spaces. Stochastic analysis and related topics VIII, 151--167, Progr. Probab., 53, Birkhäuser, Basel, 2003.
  • Mahmudov, Nazim I. Controllability of semilinear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 288 (2003), no. 1, 197--211.
  • Mahmudov, N. I.; Zorlu, S. Approximate controllability of semilinear neutral systems in Hilbert spaces. J. Appl. Math. Stochastic Anal. 16 (2003), no. 3, 233--242.
  • Mahmudov, Nazim I. On controllability of semilinear stochastic systems in Hilbert spaces. IMA J. Math. Control Inform. 19 (2002), no. 4, 363--376.
  • Mahmudov, N. I. The maximum principle for stochastic evolution systems in Hilbert spaces. Int. J. Pure Appl. Math. 2 (2002), no. 3, 287--298.
Projects
Conference Presentations




Differential-Equations