Skip Navigation LinksFractional-Calculus

Fractional Calculus

MS Thesis
  • Habibe Tilim ,  Volterra Integral Equations of the Second Kind (2007).
  • Tuba Vedi,  Schurer Type q-Bernstein Operators (2011).
  • Gizem Baran , Exponential Operators and Hermite Type Polynomials (2016).
PhD Thesis
  • Cemaliye Kurt, Some results on Laguerre type and Mittag-Leffler type functions (2017) .
  • Ceren Ustaoğlu,  Incomplete Pochhammer Ratio and Related Special Functions (2015).
  • Tuba Vedi, Approximation Properties of q-Bernstein-Schurer Operators (2015).
  • Dr. Banu Yılmaz,  Some Properties of Appell Polynomials (2014).
  • Dr. Emine Özergin,  Some Properties of Hypergeometric Functions (2011).
  • Dr. Cem Kaanoğlu,  Some Properties of Certain Class of Polynomials (2010). 
Publications
  • Mehmet Ali Özarslan and Cemaliye Kürt, Bivariate Mittag-Leffler function arising in the solutions of convolution integral equation with 2D-Laguerre-Konhauser polynomials in the kernel, Applied Math. Comput. Volume 347, 15 April 2019, 631-644.
  • H. M. Srivastava, M. A. Özarslan, Banu Yılmaz Yaşar, Difference equations for a class of twiceiterated Δh-Appell sequences of polynomials, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturelas. Serie A Mathematicas, (2018), pp 1–21.
  • Serhan Varma, Banu Yılmaz Yaşar, Mehmet Ali Özarslan, Hahn-Appell polynomials and their dorthogonality, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturelas. Serie A Mathematicas, (2018), pp 1–17.
  • M.A. Özarslan and C. Kurt,On a double integral equation including a set two variables polynomials suggested by Laguerre Polynomials, Journal of Computational Analysis and Applications 22 (7) (2017),1198-1207.
  • M.A. Özarslan and T.Vedi, Two-dimensional Chlodowsky variant of q-Bernstein-Shurer-Stancu Operators, Journal of Computational Anlaysis and Applications 23 (3) (2017),446-461. M.A. Özarslan,R. Srivastava and C. Kaanoğlu, Certain Families of Multivaible Chan-ChyanSrivastava Polynomails, Miskolc Mathematical Notes 18 1 (2017), 379-389.
  • M.A. Özarslan and H. Aktuğlu, Weighted alpha beta-statistical convergence of Kanorovich MittagLeffler operators, Slovaca 66 (3) (2016),695-706.3
  • M.A. Özarslan, New Korovkin type theorem for non-tensor Meyer-König and Zeller operators, Results in Mathematics 69 (3-4) (2016),327-343.
  • M.A. Özarslan and O. Duman, Smoothness properties of modified Bernstein-Kantorovich operators, Numerical Functional Analysis and Optimization, 37 (1) (2016), 92-105.
  • M.A. Özarslan and B.Y. Yasar, Unified Bessel, modified Bessel, spherical Bessel and BesselClifford functions, Journal of Inequalities and Special Functions ,7 (4) (2016),77- 117.
  • M.A. Özarslan and T. Vedi, Voronovskaja type approximation theorem for q-Szasz-Schurer operators, Computational Analysis, 155 (2016),353-361.
  • M.A. Özarslan, Approximation properties of Jain-Stancu operators, Filomat 30 (4) (2016),1081-1088.
  • M.A. Özarslan and H. Aktuğlu, Anti-periodic BVP for Volterra integro-differenetial equation of fractional order 1<alpha<=2 involving Mittag-Leffler function in the kernel, Journal of Nonlinear Sciences and Applications 9 (2) (2016),452-460.
  • M.A. Özarslan and H. Aktuğlu, Korovkin type theorem for non-tensor Balasz type Bleimann, Butzer and Hahn operators, Math. Meth. Appl. Sci., 38(9) (2015)1937-1944.
  • T. Vedi and M.A. Özarslan, Chlodowsky type q-Bernstein-Stancu-Kantorovich operators, Journal of Inequalities and Applications, article no: 91 (2015), 16 pages.
  • M.A. Özarslan and S. Gaboury, Srivastava-Pinter theorems for 2D-Appell polynomials and their Applications, Math. Meth. Appl. Sci., 37(15)(2014), 2198-2210.
  • S. Gaboury and M.A. Özarslan, Singular integral equation involving a multivariable analog of MittagLeffler function, Advances in differences equations, article no: 252 (2014), 10 pages.
  • H.M. Srivastava, M.A. Özarslan, B. Yılmaz, Some families of differential equations associated with the Hermite-based Appell polynomials and other classes of Hermite-based polynomials, Filomat, 28 (4) (2014), 695-708.
  • T. Vedi and M.A. Özarslan, Chlodowsky variant of q-Bernstein-Schurer-Stancu operators, Journal of Inequalities and Applications, article no: 189 (2014), 14 pages.
  • M.A. Özarslan and B. Yılmaz, A set of finite order differential equations for the Appell polynomials, J. of Comp. and Appl. Math., 259 (2014), 108-116.
  • M.A. Özarslan, On a singular integral equation including a set of multivariate polynomials suggested by Laguerre polynomials, Applied Mathematics and Computation, 229 (2014), 350-358.
  • M.A. Özarslan and B. Yılmaz, The Extended Mittag-Leffler function and its properties, Journal ofInequalities and Applications, article no:85 (2014), 10 pages. 4
  • H. Aktuğlu and M.A. Özarslan, Solvability of differential equations of order involving thep-Laplacian operator with boundary conditions, Advances in differences equations, article no: 358 (2013), 13 pages
  • M. Bozer and M.A. Özarslan, Notes on generalized Gamma, Beta and Hypergeometric function, J. Comp. Anal. and Appl., 15 (7) (2013), 1194-1201.
  • M.A. Özarslan and T. Vedi, q- Bernstein-Schurer-Kantorovich Operators, J. of Ineq. and Appl. article no: 444 (2013), 15 pages.
  • C. Kaanoğlu and M.A. Özarslan, Two-parameter Srivastava polynomials and several series identities, Adv. Difference Equ., article no: 81 (2013), 9 pages.
  • H.M. Srivastava, M.A. Özarslan and C. Kaanoğlu, Some generalized Lagrange-based ApostolBernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Russ. J. Math. Phys., 20 (1) (2013), 110-120.
  • M.A. Özarslan, A-statistical convergence of Mittag-Leffler operators, Miscolc Math. Notes, 14 (1) (2013), 209-217.
  • M.A. Özarslan and H. Aktuğlu, Local approximation properties for certain King type operators, Filomat, 27 (1) (2013), 173-181.
  • H. Aktuğlu and M.A. Özarslan, On the Solvability of Caputo q-Fractional boundary value problem involving p-Laclacian operators, Abstract and Applied Analysis, article no: 658617, (2013), 8 pages.
  • M.A. Özarslan and H. Aktuğlu, Quantative global estimates for generalized double Szas-Mirakjan operators, J. Appl. Math., article no:613258 (2013), 8 pages.
  • B. Yılmaz and M.A. Özarslan, Differential equations for the extended 2D Bernoulli and Euler Polynomials, Adv. Difference Equ., article no: 107 (2013), 16 pages.
  • M.A. Özarslan, Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials, Adv. Difference Equ., article no: 116 (2013), 13 pages.
  • M.A. Özarslan and M. Bozer, Unified Bernstein and Bleimann-Butzer-Hahn basis and its properties, Adv. Difference Equ., article no: 55 (2013), 14 pages.
  • S. Gaboury, M.A. Özarslan and R. Tremblay, Some bilateral generating functions involving the Chan-Chyan-Srivastava polynomials and some general classes of multivariable polynomials, Commun. Korean Math. Soc., 28 (4) (2013), 783-797.
  • T. Vedi, M.A. Özarslan: Some Properties of q-Bernstein-Schurer operators, J. Applied Functional Analysis, 8 (1) (2013), 45-53 .
  • M.A. Özarslan, Some remarks on extended hypergeometric, extended confluent hypergeometric and extended Appell's functions, J. Comput. Anal. Appl., 14 (6) (2012), 1148-1153.
  • Z. Ünal, M.A. Özarslan and O. Duman, Approximation properties of real and complex Post-Widder operators based on q-integers, Miskolc Math. Notes, 13 (2) (2012), 581-603.  5
  • M.A. Özarslan and H. Aktuğlu, A-statistical approximation of generalized Szász-Mirakjan-Beta operators, Appl. Math. Lett., 24 (11) (2011), 1785-1790.
  • C. Kaanoğlu and M.A. Özarslan, New families of generating functions for certain class of threevariable polynomials, Appl. Math. Comput., 218 (3) (2011), 836-842.
  • M.A. Özarslan, Some families of generating functions for the extended Srivastava polynomials, Appl. Math. Comput., 218 (3) (2011), 959-964.
  • M.A. Özarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62 (6) (2011), 2452-2462.
  • C. Kaanoğlu and M.A. Özarslan, Two-sided generating functions for certain class of r-variable polynomials, Math. Comput. Modelling, 54 (1-2) (2011), 625-631.
  • E. Özergin, M.A. Özarslan and A. Altın, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235 (16) (2011), 4601-4610.
  • C. Kaanoğlu and M.A. Özarslan, Some properties of generalized multiple Hermite polynomials, J. Comput. Appl. Math., 235 (16) (2011), 4878-4887.
  • Nazım I. Mahmudov, M.A. Özarslan and P. Sabancıgil, I-approximation properties of certain class of linear positive operators, Studia Sci. Math. Hungar., 48 (2) (2011), 205-219.
  • M.A. Özarslan and C. Kaanoğlu, Multilateral generating functions for classes of polynomials involving multivariable Laguerre polynomials, J. Comput. Anal. Appl., 13 (4) (2011), 683-691.
  • M.A. Özarslan, O. Duman and Nazım I. Mahmudov, Local approximation properties of modified Baskakov operators, Results in Math., 59 (1-2) (2011), 1-11.
  • O. Duman and M.A. Özarslan, Global approximation results for modified Szász-Mirakjan operators, Taiwanese J. Math., 15 (1) (2011), 75-86.
  • M.A. Özarslan, q-Szász Schurer operators, Miskolc Math. Notes, 12 (2) (2011), 225-235.
  • H. Aktuğlu, M.A. Özarslan and O. Duman, Matrix summability methods on the approximation of multivariate q-MKZ operators, Bull. Malays. Math. Sci. Soc., 34 (3) (2011), 465-474.
  • H. Aktuğlu, and M.A. Özarslan, Korovkin type approximation theorem for BBH type operators via I - convergence, Math. Slovaca, 60 (6) (2010), 865-876.
  • M.A. Özarslan and E. Özergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling, 52 (9-10) (2010), 1825-1833.
  • S. Zorlu, H. Aktuglu and M.A. Özarslan, An estimation to the solution of an initial value problem via q-Bernstein polynomials, J. Comput. Anal. Appl., 12 (3) (2010), 637–645. 6
  • 55) M.A. Özarslan, E. Özergin and C. Kaanoğlu, Multilateral generating functions for the multiple Laguerre and multiple Hermite polynomials. J. Comput. Anal. Appl., 12 (3) (2010), 667–677.
  • M.A. Özarslan, O. Duman and C. Kaanoğlu, Rates of convergence of certain King-type operators for functions with derivative of bounded variation, Math. Comput. Modelling, 52 (1-2) (2010), 334-345.
  • H. Karslı and M.A. Özarslan, Direct Local and global approximation results for operators of gamma type., Hacet. J. Math. Stat., 39 (2) (2010), 241-253.
  • M.A. Özarslan and O. Duman, Global approximation properties of modified SMK operators, Filomat, 24 (1) (2010), 47-61.
  • O. Duman, M. A. Özarslan and E. Erkuş-Duman, Rates of ideal convergence for approximation operators., Mediterr. J. Math., 7 (1) (2010), 111-121.
  • H.M. Srivastava, M.A. Özarslan and C. Kaanoğlu, Some families of generating functions for a certain class of three-variable polynomials, Integral Transforms Spec. Func., 21 (12) (2010), 885-896.
  • H. Aktuğlu, M.A. Özarslan, H. Gezer, A-equistatistical convergence of positive linear operators, J. Comput. Anal. Appl., 12 (1) (2010), 24-36.
  • M.A. Özarslan and O. Duman, Local approximation behavior of modified SMK operators, Mıscolc Mathematical Notes, 11(1) (2010), 87-99.
  • E. Özergin, M.A. Özarslan and H.M. Srivastava, Some families of generating functions for a class of bivariate polynomials, Math. Comput. Modelling, 50 (7-8) (2009), 1113-1120.
  • M.A. Özarslan and O. Duman, Approximation theorems by Meyer-König and Zeller type operators, Chaos, Solitons & Fractals., 41 (1) (2009), 451-456.
  • M. A. Özarslan, I-convergence theorems for a class of k-positive linear operators, Central European Journal of Mathematics, 7 (2) (2009), 357-362.
  • M.A. Özarslan, O. Duman, B. Della Vecchia, Modified Szasz-Mirakjan-Kantorovich operators preserving linear functions, Turkish J. Math., 33 (2) (2009), 151-158.
  • M.A.Özarslan and O. Duman, A new approach in obtaining a better estimation in approximation by positive linear operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 58 (1) (2009), 17-22.
  • M.A. Özarslan, O. Duman and H.M. Srivastava, Statistical approximation results for Kantorovichtype operators involving some special polynomials, Math. Comput. Modelling, 48 (3-4) (2008), 388-401.
  • M.A. Özarslan and O. Duman, Approximation properties of Poisson integrals for orthogonal expansions, Taiwanese J. Math., 12 (5) (2008), 1147 – 1163.7
  • M. A. Özarslan, H. Aktuğlu, Local approximation properties of certain class of linear positive operators via I-convergence, Central European Journal of Mathematics, 6 (2) (2008), 281-286.
  • M.A. Özarslan and O. Duman, Local approximation results for Szasz-Mirakjan type operators, Archiv Der Math., 90 (2) (2008), 144-149.
  • O. Duman, M.A. Özarslan and H. Aktuğlu, Better error estimation for Szasz-Mirakjan-Beta operators, J. Comput. Anal. Appl., 10 (1) (2008), 53-59.
  • O. Duman and M. A. Özarslan, Szasz-Mirakjan type operators providing a better error estimation, Applied Math. Letters., 20 (12) (2007), 1184-1188.
  • M. A. Özarslan and O. Duman, MKZ type operators providing a better estimation on [1/2,1), Canadian Math. Bull., 50 (3) (2007), 434-439.
  • M.A. Özarslan, q-Laguerre type linear positive operators, Stud. Sci. Math. Hungarica, 44 (1) (2007),65-80.
  • A. Altın, E. Erkuş and M.A. Özarslan, Families of linear generating functions for polynomials in two variables, Integral Transforms and Special Functions, 17 (5) (2006), 315-320.
  • O. Duman, M. A. Özarslan, O. Doğru, On integral type generalizations of positive linear operators, Studia Math. 174 (1) (2006), 1-12.
  • M. A. Özarslan, O. Duman and O. Doğru, A-Statistical convergence for a class of positive linear operators, Rev. Anal. Numer. Theor. Approx., 35 (2) (2006), 161-172.
  • M. A. Özarslan, O. Duman and O. Doğru, Rates of A-statistical convergence of approximating operators, Calcolo, 42 (2) (2005), 93-104.
  • M. A. Özarslan and A. Altin, Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K- functions, J. of Math. Anal. Appl., 297 (1) (2004),186-193 .
  • O. Doğru, M.A. Özarslan, F. Taşdelen, On positive operators involving a certain class of generating functions, Stud. Sci. Math. Hungarica, 41 (4)(2004), 415-429.
Projects
  • Type B (Supported by Ministry of National Education and Culture), Project Title: New Techniques for Finding Generating Function,  Principle Investigator: Mehmet Ali Özarslan, Investigator: Emine Özergin (April 2009- 2011)      
  • Type A (Supported by Eastern Mediterranean University), Project Title: q-Parametric Positive Linear Operators , Principle Investigator: Nazım Mahmudov , Investigators: Mehmet Ali Özarslan, Pembe Sabancıgil (September 2007- 2009)
  • Type B (Supported by Ministry of National Education and Culture), Project Title: Solution of Initial value problem by q-Meyer-König-Zeller operators, Principle Investigator: Nazım Mahmudov, Investigators: Mehmet Ali Özarslan, Hüseyin Aktuğlu (November 2007- January2009)
Conference Presentations
  • M.A. Özarslan, Hermite-based unified Apostol-Bernoulli, Euler and Genocchi Polynomials,‘International Congress in Honour of Professor Hari M. Srivastava’, Uludağ University, Bursa-Turkey, August 23-26, 2012.
  • M.A. Özarslan, B. Yılmaz, A set of Finite Order Differental Equations for the Appell Polynomials, ‘ International Congress on Computational and Applied Mathematics’ – ICCAM 2012, Gent-Belgium, July 09-13, 2012.
  • M.A. Özarslan, Apostol-Lagrange-Bernoulli and Apostol-Lagrange-Euler polynomials, Intenational Conference on Applied Mathematics and Algebra, İstanbul-Turkey, June 29-July 2, 2011.
  • M. A. Özarslan, Some Families of Generating Functions for the Extended Srivastava Polynomials, ‘International Congress in Honour of Professor H. M. Srivastava on his 70th Birth Anniversary’, Bursa-Turkey, August 18-21, 2010.
  • A. Altın, O. Doğru and M. A. Özarslan, On the Approximation Properties of Bivariate Bleimann, Butzer and Hahn Operators ‘WSEAS VIII. International Conference on Applied Mathematics’, Tenerife-Spain, December 16-18, 2005.
  • A. Altın, O. Doğru and M. A. Özarslan, Rates of Convergence of Meyer-König and Zeller Operatos Based on q-Integers, ‘WSEAS VIII. International Conference on Applied Mathematics’, Tenerife-Spain, December 16-18, 2005.
  • A. Altın, O. Doğru and M. A. Özarslan, Kantorovich Type Generalization of Positive Linear Operators, ‘WSEAS VI. International Conference on Applied Mathematics’, Corfu-Greece, August 17-19, 2004.

           

Prof. Dr. NAZIM MAHMUDOV

MS Thesis
  • Reger Ibrahim, Thesis title: Riemann-Louiville type FDE, M.Sc. completed: 2016
  • Ojo Gbenga Olayinka, Thesis title: Adomian's Decomposition of Multi-Order Fractional, Differential Equations, M.Sc. completed: 2016
  • Hogir Ageed Khaleel, Thesis title: On Fractional Differential Equations, M.Sc. completed: 2015
  • Abdullah Hasan Jangeer , Thesis title: Fractional Integral Inequalities of Gronwall Type, M.Sc. completed: 2015
  • Sevda Isiktas, Thesis title: Controllability of linear deterministic systems, M.Sc. completed: 1997
  • Verda Peyker, Thesis title: Linear retarded differential equations, M.Sc. completed: 2000
  • Ceren Mirillo, Thesis title: Linear retarded differential equations, M.Sc. completed: 2004
  • Umut Yolsal, Thesis title: The Gauge Integral, MSc completed: 2004
  • Mustafa Kara, Thesis title: The Calculus of Time Scales, M.Sc. completed: 2005
  • Benan Gencsu, Thesis title: Inequalities on Time Scales, M.Sc. completed: 2005
  • Havva Kafaoglu, Thesis title: Differential Equations on Time Scales, M.Sc. completed: 2006
PhD Thesis
  • SEDEF SULTAN EMIN, Thesis Title: Existence Results for Boundary Value Problems of Fractional Type, Differential Equations, Ph.D. completed in June 2019, EMU
  • AREEN SABER SALAH AL-KHATEEB, Thesis Title: Stability, Existence and Uniqueness of Boundary Value Problems for a Coupled System of Fractional Differential Equations, Ph.D. completed in June 2019, EMU
  • SAMEER HASSAN SALEEH BAWA`NEH, Thesis Title: Computational Numerical Solution Algorithm for Fractional Differential Equations, Ph.D. completed in June 2019, EMU
  • Muath Awadalla, Thesis Title: Fractional Differential Equations with Fractional Boundary Conditions, Ph.D. completed in February 2018, EMU
  • Bilal Sami, Thesis Title: Fractional Differential Equations with Fractional Boundary Conditions, Ph.D. completed in February 2018, EMU
  • Helal Mahmoud, Thesis Title: Fractional Differential Equations with Fractional Boundary Conditions, Ph.D. completed in June 2016, EMU
  • Mohammad Momenzadeh, Thesis Title: A Comprehensive Study On q-Polynomials, Ph.D. completed in February 2016, EMU
  • Sinem Unul, Thesis Title: On a Class Fractional Differential Equations, Ph.D. completed in February 2016, EMU
  • Marzieh Eini Keleshteri, Thesis Title: Comprehensive Study On The Class Of q-Appell Polynomials, Ph.D. completed in July 2015, EMU
  • Afet Oneren, Thesis Title: Q-polynomials, Ph.D. completed in October 2014, EMU
  • Mustafa Kara, Thesis Title: Generalized Kantorovich type Operators, Ph.D. completed in January 2011, EMU
  • Havva Kaffaoglu, Thesis Title: Phillips type Operators Based on q-integers, Ph.D. completed in May 2011, EMU
  • Pembe Sabancigil,  Thesis Title: Bernstein type Operators Based on q-integers, Ph.D. completed in May 2009, EMU
  • Muhammed Mattar, Thesis Title: Controllability of Backward Equations, Ph.D. completed in June 2005, EMU
  • Sonuc Zorlu, Thesis Title: Controllability of Stochastic Systems, Ph.D. completed in May 2003, EMU
  • Ali Denker, Thesis Title: Controllability concepts for stochastic control systems, Ph.D. completed in May 2002, EMU
Publications

Journal Papers_indexed in SCI 

  • NI Mahmudov, Necessary First-Order and Second-Order Optimality Conditions in DiscreteTime Stochastic Systems, Journal of Optimization Theory and Applications 2019-09-14 | journalarticle DOI: 10.1007/s10957-019-01478-y
  • NI Mahmudov, A novel fractional delayed matrix cosine and sine Applied Mathematics Letters 2019-06 | journal-article DOI: 10.1016/j.aml.2019.01.001
  • NI Mahmudov, Representation of solutions of discrete linear delay systems with non permutable matrices Applied Mathematics Letters 2018, 85, 8-14
  • Mahmudov, N. I. Asymptotic properties of powers of linear positive operators which preserve e2. Comput. Math. Appl. 62 (2011), no. 12, 4568–4575.
  • Sakthivel, R.; Ren, Yong; Mahmudov, N. I. On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 62 (2011), no. 3, 1451–1459.
  • Mahmudov, N. I. q-Szász-Mirakjan operators which preserve x2. J. Comput. Appl. Math. 235 (2011), no. 16, 4621–4628.
  • Mahmudov, N. I. Approximation by Bernstein-Durrmeyer-type operators in compact disks. Appl. Math. Lett. 24 (2011), no. 7, 1231–1238.
  • Mahmudov, N. I., Approximation properties of complex q-Szász-Mirakjan operators in compact disks. Comput. Math. Appl. 60 (2010), no. 6,1784–1791.
  • Mahmudov, N. I., Convergence properties and iterations for q-Stancu polynomials in compact disks. Comput. Math. Appl. 59 (2010), no. 12, 3763–3769.
  • Mahmudov, N. I., Approximation theorems for certain positive linear operators. Appl. Math. Lett. 23 (2010), no. 7, 812–817.
  • Sakthivel, R.; Mahmudov, N. I.; Lee, Sang-Gu Controllability of non-linear impulsive stochastic systems. Internat. J. Control 82 (2009), no. 5, 801--807.
  • Sakthivel, R.; Mahmudov, N. I.; Kim, J. H. On controllability of second order nonlinear impulsive differential systems. Nonlinear Anal. 71 (2009), no. 1-2, 45--52.
  • Mahmudov, Nazim I. Approximate controllability of evolution systems with nonlocal conditions. Nonlinear Anal. 68 (2008), no. 3, 536--546.
  • Mahmudov, N. I.; McKibben, M. A. On backward stochastic evolution equations in Hilbert spaces and optimal control. Nonlinear Anal. 67 (2007), no. 4, 1260--1274.
  • Bashirov, A. E.; Mahmudov, N.; \c Semi, N.; Etikan, H. Partial controllability concepts. Internat. J. Control 80 (2007), no. 1, 1--7.
  • Dauer, J. P.; Mahmudov, N. I.; Matar, M. M. Approximate controllability of backward stochastic evolution equations in Hilbert spaces. J. Math. Anal. Appl. 323 (2006), no. 1, 42--56.
  • Mahmudov, N. I.; Zorlu, S. Controllability of semilinear stochastic systems. Internat. J. Control 78 (2005), no. 13, 997--1004.
  • Dauer, J. P.; Mahmudov, N. I. Integral inequalities and mild solutions of semilinear neutral evolution equations. J. Math. Anal. Appl. 300 (2004), no. 1, 189--202.
  • Dauer, J. P.; Mahmudov, N. I. Controllability of some nonlinear systems in Hilbert spaces. J. Optim. Theory Appl. 123 (2004), no. 2, 319--329.
  • Dauer, J. P.; Mahmudov, N. I. Exact null controllability of semilinear integrodifferential systems in Hilbert spaces. J. Math. Anal. Appl. 299 (2004), no. 2, 322--332.
  • Dauer, J. P.; Mahmudov, N. I. Controllability of stochastic semilinear functional differential equations in Hilbert spaces. J. Math. Anal. Appl. 290 (2004), no. 2, 373--394.
  • Mahmudov, Nazim I. Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control Optim. 42 (2003), no. 5, 1604--1622.
  • Mahmudov, Nazim I. Controllability of semilinear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 288 (2003), no. 1, 197--211.
  • Mahmudov, N. I.; Zorlu, S. Controllability of non-linear stochastic systems. Internat. J. Control 76 (2003), no. 2, 95--104.
  • Dauer, J. P.; Mahmudov, N. I. Approximate controllability of semilinear functional equations in Hilbert spaces. J. Math. Anal. Appl. 273 (2002), no. 2, 310--327.
  • Mahmudov, Nazim I. Controllability of linear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 259 (2001), no. 1, 64--82.
  • Mahmudov, Nazim Idrisoglu Controllability of linear stochastic systems. IEEE Trans. Automat. Control 46 (2001), no. 5, 724--731.
  • Mahmudov, N. I.; Denker, A. On controllability of linear stochastic systems. Internat. J. Control 73 (2000), no. 2, 144--151.
  • Bashirov, Agamirza E.; Mahmudov, Nazim I. On concepts of controllability for deterministic and stochastic systems. SIAM J. Control Optim. 37 (1999), no. 6, 1808--1821 (electronic).

Journal Papers in SCIE 

  • NI Mahmudov, Delayed perturbation of Mittag‐Leffler functions and their applications to fractional linear delay differential equations, Mathematical Methods in the Applied Sciences 2019-11-15 | journal-article DOI: 10.1002/mma.5446
  • NI Mahmudov, S Emin, Fractional-order boundary value problems with Katugampola fractional integral conditions, Advances in Difference Equations 2018 (1), 81
  • NI Mahmudov, Partial-approximate controllability of nonlocal fractional evolution equations via approximating method Applied Mathematics and Computation 334, 227-238
  • NI Mahmudov, Finite-approximate controllability of fractional evolution equations: variational approach Fractional Calculus and Applied Analysis 21 (4), 919-93
  • SG Gal, NI Mahmudov, BD Opris, Approximation with an Arbitrary Order by Szasz, SzaszKantorovich and Baskakov Complex Operators in Compact Disks Azerbaijan Journal of Mathematics-Print ISSN: 2218-6816, Online ISSN: 2221
  • NI Mahmudov, M Awadalla, K Abuassba, Nonlinear sequential fractional differential equations with nonlocal boundary conditions Advances in Difference Equations 2017 (1), 319
  • NI Mahmudov, H Mahmoud, Four-point impulsive multi-orders fractional boundary value problems J. Comput. Anal. Appl 22 (7), 1249-1260
  • NI Mahmudov, R Murugesu, C Ravichandran, V Vijayakumar, Approximate controllability results for fractional semilinear integro-differential inclusions in Hilbert spaces Results in Mathematics 71 (1-2), 45-61
  • N Mahmudov, MM Matar, EXISTENCE OF MILD SOLUTION FOR HYBRID DIFFERENTIAL EQUATIONS WITH ARBITRARY FRACTIONAL ORDER TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS 8 (2), 160-169
  • NI Mahmudov, Finite-approximate controllability of evolution equations, Appl. Comput. Math 16 (2), 159-167
  • R Sakthivel, Y Ren, A Debbouche, NI Mahmudov Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions Applicable Analysis 95 (11), 2361-2382
  • NI Mahmudov, V Vijayakumar, R Murugesu, Approximate controllability of second-order evolution differential inclusions in Hilbert spaces Mediterranean Journal of Mathematics 13 (5), 3433-3454
  • N Mahmudov, Approximation Properties of the q-Balázs–Szabados Complex Operators in the Case q≥1, Computational Methods and Function Theory 16 (4), 567–583
  • NI Mahmudov, MA Mckibben, ON APPROXIMATELY CONTROLLABLE SYSTEMS Appl. Comput. Math 15 (3), 247-264
  • MJ Mardanov, NI Mahmudov, YA Sharifov, Existence and uniqueness results for q-fractional difference equations with p-Laplacian operators Advances in Difference Equations 2015 (1), 185
  • NI Mahmudov, M Kara, Approximation properties of weighted Kantorovich type operators in compact disks Journal of Inequalities and Applications 2015 (1), 46
  • Mardanov, Misir J; Malik, Samin T; Mahmudov, Nazim I; On the theory of necessary optimality conditions in discrete systems. Adv. Difference Equ. 2015, 2015:28.
  • Mahmudov, Nazim I; Kara, Mustafa; Approximation properties of weighted Kantorovich type operators in compact disks. J. Inequal. Appl. 2015, 2015:46.
  • Mahmudov, Nazim I. Difference equations of q-Appell polynomials. Appl. Math. Comput. 245 (2014), 539–543
  • Ganesh, Ramakrishnan; Sakthivel, Rathinasamy; Mahmudov, Nazim I. Approximate controllability of fractional functional equations with infinite delay. Topol. Methods Nonlinear Anal. 43 (2014), no. 2, 345–364.
  • Mahmudov, N. I.; Unul, S. Existence of solutions of α∈(2,3]order fractional three-point boundary value problems with integral conditions. Abstr. Appl. Anal. 2014, Art. ID 198632, 12 pp.
  • Mahmudov, Nazim I.; Keleshteri, Marzieh Eini q-extensions for the Apostol type polynomials. J. Appl. Math. 2014, Art. ID 868167, 8 pp.
  • Mahmudov, N. I.; Momenzadeh, M. On a class of q-Bernoulli, q-Euler, and q-Genocchi polynomials. Abstr. Appl. Anal. 2014, Art. ID 696454, 10 pp.
  • Mahmudov, N. I.; Gupta, Vijay Approximation by complex q-Durrmeyer polynomials in compact disks. Acta Math. Appl. Sin. Engl. Ser. 30 (2014),no. 1, 65–74.
  • Mahmudov, N. I.; Akkeleş, A.; Öneren, A. On a class of two dimensional (w,q)-Bernoulli and (w,q)-Euler polynomials: properties and location of zeros. J. Comput. Anal. Appl. 16 (2014), no. 2, 282–292.
  • Gal, Sorin G.; Mahmudov, Nazim I.; Kara, MustafaApproximation by complex q-SzászKantorovich operators in compact disks, q>1.Complex Anal. Oper. Theory 7 (2013), no. 6, 1853–1867.
  • Mahmudov, Nazim Idrisoglu q-Szász operators which preserve x2. Math. Slovaca 63 (2013), no.5, 1059–1072.
  • Ganesh, R.; Sakthivel, R.; Ren, Yong; Anthoni, S. M.;Mahmudov, N. I. Controllability of neutral fractional functional equations with impulses and infinite delay. Abstr. Appl. Anal. 2013, Art. ID 901625, 12 pp.
  • Mahmudov, N. I. Asymptotic properties of iterates of certain positive linear operators. Math. Comput. Modelling 57 (2013), no. 5-6, 1480–1488.
  • Mahmudov, N. I.; Zorlu, S. Approximate controllability of fractional integro-differential equations involving nonlocal initial conditions. Bound. Value Probl. 2013, 2013:118, 16 pp.
  • Mahmudov, Nazim I.; Keleshteri, M. Eini On a class of generalized q-Bernoulli and q-Euler polynomials. Adv. Difference Equ. 2013,2013:115, 10 pp.
  • Mahmudov, N. I.; Kara, M. Approximation theorems for complex Szász-Kantorovich operators. J. Comput. Anal. Appl. 15 (2013), no. 1, 32–38.
  • Ganesh, R.; Sakthivel, R.; Mahmudov, N. I.; Anthoni, S. M.Approximate controllability of fractional integrodifferential evolution equations. J. Appl. Math. 2013, Art. ID 291816, 7 pp.
  • Mahmudov, Nazim I. On a class of q-Bernoulli and q-Euler polynomials. Adv. Difference Equ. 2013,2013:108, 11 pp.
  • Mahmudov, N. I. Approximate controllability of fractional Sobolev-type evolution equations in Banach spaces. Abstr. Appl. Anal. 2013, Art. ID 502839, 9 pp.
  • Sakthivel, R.; Revathi, P.; Mahmudov, N. I. Asymptotic stability of fractional stochastic neutral differential equations with infinite delays.Abstr. Appl. Anal. 2013, Art. ID 769257, 9 pp.
  • Mahmudov, N. I.; Şemi, N. Approximate controllability of semilinear control systems in Hilbert spaces. TWMS J. Appl. Eng. Math. 2 (2012), no. 1, 67–74.
  • Mahmudov, N. I. Approximation by the q-Szász-Mirakjan operators. Abstr. Appl. Anal. 2012, Art. ID 754217, 16 pp.
  • Mahmudov, Nazim I. Approximation properties of bivariate complex q-Bernstein polynomials in the case q>1. Czechoslovak Math. J. 62(137)(2012), no. 2, 557–566.
  • Mahmudov, N. I. q-analogues of the Bernoulli and Genocchi polynomials and the SrivastavaPintér addition theorems. Discrete Dyn. Nat. Soc.2012, Art. ID 169348, 8 pp.
  • Mahmudov, Nazim; Gupta, Vijay; Kaffaoğlu, Havva On certainq-Phillips operators. Rocky Mountain J. Math. 42 (2012), no. 4, 1291–1312.
  • Mahmudov, N. I.; Kara, M. Approximation theorems for generalized complex Kantorovich-type operators. J. Appl. Math. 2012, Art. ID 454579, 14 pp.
  • Mahmudov, Nazim Idrisoglu; Sabancigil, Pembe Voronovskaja type theorem for the Lupaş qanalogue of the Bernstein operators. Math. Commun.17 (2012), no. 1, 83–91.
  • Sakthivel, R.; Mahmudov, N. I.; Nieto, Juan. J. Controllability for a class of fractional-order neutral evolution control systems. Appl. Math. Comput.218 (2012), no. 20, 10334–10340.
  • Mahmudov, N. I.; Gupta, Vijay Approximation by genuine Durrmeyer-Stancu polynomials in compact disks. Math. Comput. Modelling 55(2012), no. 3-4, 278–285.
  • Gal, Sorin G.; Gupta, Vijay; Mahmudov, Nazim I.Approximation by a complex q-Durrmeyer type operator. Ann. Univ. Ferrara Sez. VII Sci. Mat. 58 (2012), no. 1, 65–87.
  • Mahmudov, Nazim; Sabancigil, Pembe A q-analogue of the Meyer-König and Zeller operators. Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1,39–51.
  • Mahmudov, Nazim Idrisoglu; Özarslan, Mehmet Ali;Sabancigil, Pembe I-approximationproperties of certain class of linear positive operators. Studia Sci. Math. Hungar. 48 (2011), no. 2, 205–219.
  • Mahmudov, Nazim; Gupta, Vijay On certain q-analogue of Szász Kantorovich operators. J. Appl. Math. Comput. 37 (2011), no. 1-2, 407–419.
  • Mahmudov, N. I. Higher order limit q-Bernstein operators. Math. Methods Appl. Sci. 34 (2011), no. 13, 1618–1626.
  • Sakthivel, R.; Mahmudov, N. I.; Ren, Yong Approximate controllability of the nonlinear thirdorder dispersion equation. Appl. Math. Comput.217 (2011), no. 21, 8507–8511.
  • Mahmudov, N. I. Approximation by genuine q-Bernstein-Durrmeyer polynomials in compact disks. Hacet. J. Math. Stat. 40 (2011),no. 1, 77–89.
  • Özarslan, M. Ali; Duman, Oktay; Mahmudov, N. I. Local approximation properties of modified Baskakov operators. Results Math. 59 (2011),no. 1-2, 1–11.
  • Sakthivel, R.; Nieto, Juan J.; Mahmudov, N. I. Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay. Taiwanese J. Math. 14 (2010), no. 5, 1777–1797.
  • Mahmudov, N. I., Approximation properties of complex q-Szász-Mirakjan operators in compact disks. Comput. Math. Appl. 60 (2010), no. 6,1784–1791.
  • Mahmudov, N. I., Convergence properties and iterations for q-Stancu polynomials in compact disks. Comput. Math. Appl. 59 (2010), no. 12, 3763–3769.
  • Mahmudov, N. I., Statistical approximation of Baskakov and Baskakov-Kantorovich operators based on the q-integers. Cent. Eur. J. Math. 8(2010), no. 4, 816–826.
  • Mahmudov, N. I.; Sabancigil, P., On genuine q-Bernstein-Durrmeyer operators. Publ. Math. Debrecen 76 (2010), no. 3-4, 465–479.
  • Mahmudov, N. I.; Kaffaoǧlu, H., On q-Szász-Durrmeyer operators. Cent. Eur. J. Math. 8 (2010), no. 2, 399–409.
  • Mahmudov, N. I., The moments for q-Bernstein operators in the case 0<q<1. Numer. Algorithms 53 (2010), no. 4, 439–450.
  • Mahmudov, N. I.; Sabancigil, P., Some approximation properties of q-parametric BBH operators, Journal of Computational Analysis and Applications, vol. 12, no. 1, pp. 111–123, 2010.
  • Sakthivel, R.; Mahmudov, N. I.; Lee, Sang-Gu Controllability of non-linear impulsive stochastic systems. Internat. J. Control 82 (2009), no. 5, 801--807.
  • Mahmudov, Nazim I. Korovkin-type theorems and applications. Cent. Eur. J. Math. 7 (2009), no. 2, 348--356.
  • Sakthivel, R.; Anandhi, E. R.; Mahmudov, N. I. Approximate controllability of second-order systems with state-dependent delay. Numer. Funct. Anal. Optim. 29 (2008), no. 11-12, 1347-1362.
  • Mahmudov, N. I.; Sabancigil, P. q-parametric Bleimann Butzer and Hahn operators. J. Inequal. Appl. 2008, Art. ID 816367, 15 pp.
  • Samoilenko, A. M.; Mahmudov, N. I.; Stanzhitskii, A. N. Existence, uniqueness, and controllability results for neutral FSDES in Hilbert spaces. Dynam. Systems Appl. 17 (2008), no.1, 53--70.
  • Sakthivel, R.; Mahmudov, N. I.; Nieto, Juan. J.; Kim, J. H. On controllability of nonlinear impulsive integrodifferential systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 15 (2008), no. 3, 333--343.
  • Mahmudov, Nazim I. Approximate controllability of evolution systems with nonlocal conditions. Nonlinear Anal. 68 (2008), no. 3, 536--546.
  • Mahmudov, Nazim I.; McKibben, Mark A. On a class of backward McKean-Vlasov stochastic equations in Hilbert space: existence and convergence properties. Dynam. Systems Appl. 16 (2007), no. 4, 643--664.
  • Samoilenko, A. M.; Mahmudov, N. I.; Stanzhitskii, A. N. The averaging method and two-sided bounded solutions of stochastic Itô systems. (Russian) Differ. Uravn. 43 (2007), no. 1, 52--63,142.
  • Sakthivel, R.; Mahmudov, N. I.; Kim, J. H. Approximate controllability of nonlinear impulsive differential systems. Rep. Math. Phys. 60 (2007), no. 1, 85--96.
  • Bashirov, A. E.; Mahmudov, N.; \c Semi, N.; Etikan, H. Partial controllability concepts. Internat. J. Control 80 (2007), no. 1, 1--7.
  • Sakthivel, R.; Kim, J.-H.; Mahmudov, N. I. On controllability of nonlinear stochastic systems. Rep. Math. Phys. 58 (2006), no. 3, 433--443.
  • Mahmudov, N. I.; McKibben, M. A. Approximate controllability of second-order neutral stochastic evolution equations. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 13 (2006), no. 5, 619--634.
  • Mahmudov, N. I.; McKibben, M. A. Abstract second-order damped McKean-Vlasov stochastic evolution equations. Stoch. Anal. Appl. 24 (2006), no. 2, 303--328.
  • Mahmudov, N. I. Existence and uniqueness results for neutral SDEs in Hilbert spaces. Stoch. Anal. Appl. 24 (2006), no. 1, 79--95.
  • Dauer, J. P.; Mahmudov, N. I. Remark on existence result for second order evolution equations in Banach spaces. Int. J. Pure Appl. Math. 12 (2004), no. 4, 471--482.
  • Dauer, J. P.; Mahmudov, N. I. Controllability of stochastic semilinear functional differential equations in Hilbert spaces. J. Math. Anal. Appl. 290 (2004), no. 2, 373--394.
  • Mahmudov, Nazim Controllability and observability of linear stochastic systems in Hilbert spaces. Stochastic analysis and related topics VIII, 151--167, Progr. Probab., 53, Birkhäuser, Basel, 2003.
  • Mahmudov, Nazim I. Controllability of semilinear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 288 (2003), no. 1, 197--211.
  • Mahmudov, N. I.; Zorlu, S. Approximate controllability of semilinear neutral systems in Hilbert spaces. J. Appl. Math. Stochastic Anal. 16 (2003), no. 3, 233--242.
  • Mahmudov, Nazim I. On controllability of semilinear stochastic systems in Hilbert spaces. IMA J. Math. Control Inform. 19 (2002), no. 4, 363--376.
  • Mahmudov, N. I. The maximum principle for stochastic evolution systems in Hilbert spaces. Int. J. Pure Appl. Math. 2 (2002), no. 3, 287--298.
Projects
Conference Presentations

MS Thesis
PhD Thesis
Publications
  • D. Baleanu, A. Fernandez, “On fractional operators and their classifications", Mathematics, 7(9) (2019), 830. DOI:10.3390/math7090830
  • J.-D. Djida, A. Fernandez, I. Area, “Well-posedness results for fractional semi-linear wave equations", Discrete & Continuous Dynamical Systems – B 25(2) (2020), pp. 569–597. DOI: 10.3934/dcdsb.2019255
  • T. Abdeljawad, A. Fernandez, "On a new class of fractional difference-sum operators with discrete Mittag-Leffler kernels", Mathematics 7(9) (2019), 772. DOI: 10.3390/math7090772
  • Fernandez, C. Ustaoğlu, “On some analytic properties of tempered fractional calculus", Journal of Computational and Applied Mathematics 366 (2020), 112400. DOI: 10.1016/j.cam.2019.112400
  • Fernandez, D. Baleanu, H.M. Srivastava, "Corrigendum to “Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions" [Commun. Nonlinear Sci. Numer. Simulat. 67 (2019) 517–527", Communications in Nonlinear Science and Numerical Simulation 82 (2020), 104963. DOI: 10.1016/j.cnsns.2019.104963
  • A.K. Golmankhaneh, S. Ashrafi, D. Baleanu, A. Fernandez, “Brownian motion on Cantor sets", International Journal of Nonlinear Science and Numerical Simulation, accepted 2019.
  • A.K. Golmankhaneh, A. Fernandez, “Random variables and stable distributions on fractal Cantor sets", Fractal and Fractional 3(2) (2019), 31. DOI: 10.3390/fractalfract3020031
  • H.M. Srivastava, A. Fernandez, D. Baleanu, “Some new fractional-calculus connections between Mittag-Leffler functions", Mathematics 7(6) (2019), 485. DOI: 10.3390/math7060485
  • Fernandez, “A complex analysis approach to Atangana–Baleanu fractional calculus", Mathematical Methods in the Applied Sciences (2019), pp. 1–18. DOI: 10.1002/mma.5754
  • Fernandez, M.A. Özarslan, D. Baleanu, "On fractional calculus with general analytic kernels", Applied Mathematics and Computation 354 (2019), pp. 248–265. DOI: 10.1016/j.amc.2019.02.045
  • Fernandez, D. Baleanu, "A novel definition of fractional differintegrals with Mittag-Leffler kernel having a semigroup property", Filomat 33(1) (2019), pp. 245–254. DOI: 10.2298/FIL1901245F
  • A.K. Golmankhaneh, A. Fernandez, "Fractal calculus of functions on Cantor tartan spaces", Fractal and Fractional 2(4) (2018). DOI: 10.3390/fractalfract2040030
  • Fernandez, D. Baleanu, “Differintegration with respect to functions in fractional models involving Mittag-Leffler functions", SSRN 3275746 (2018).
  • J.-D. Djida, A. Fernandez, “Interior regularity estimates for a degenerate elliptic equation with mixed boundary conditions", Axioms 7(3) (2018), pp. 1–16. DOI: 10.3390/axioms7030065
  • Fernandez, D. Baleanu, A.S. Fokas, "Solving PDEs of fractional order using the unified transform method", Applied Mathematics and Computation 339C (2018), pp. 738–749. DOI: 10.1016/j.amc.2018.07.061
  • Fernandez, D. Baleanu, H.M. Srivastava, "Series representations for fractional-calculus operators involving generalised MittagLeffler functions", Communications in Nonlinear Science and Numerical Simulation, 67 (2019), pp. 517–527. DOI: 10.1016/j.cnsns.2018.07.035
  • A.K. Golmankhaneh, A. Fernandez, A.K. Golmankhaneh, D. Baleanu, "Diffusion on middle-ξ Cantor sets", Entropy 20(7) (2018). DOI: 10.3390/e20070504
  • Fernandez, A.S. Fokas, "Asymptotics to all orders of the Hurwitz zeta function", Journal of Mathematical Analysis and Applications 465(1) (2018), pp. 423–458. DOI: 10.1016/j.jmaa.2018.05.012
  • Fernandez, "The Lerch zeta function as a fractional derivative", Banach Center Publications 118 (2019), pp. 113–124. Preprint available from arXiv:1804.07936. DOI: 10.4064/bc118-7
  • Fernandez, "An elliptic regularity theorem for fractional partial differential operators", Computational and Applied Mathematics 37 (2018), pp. 5542–5553. DOI: 10.1007/s40314-018-0618-2
  • Fernandez, D. Baleanu, "The mean value theorem and Taylor's theorem for fractional derivatives with Mittag-Leffler kernel", Advances in Difference Equations 2018:86 (2018). DOI: 10.1186/s13662-018-1543-9
  • Fernandez, E.A. Spence, A.S. Fokas, "Uniform asymptotics as a stationary point approaches an endpoint", IMA Journal of Applied Mathematics 83(1) (2018), pp. 204–242. DOI: 10.1093/imamat/hxx042
  • D. Baleanu, A. Fernandez, "On some new properties of fractional derivatives with Mittag-Leffler kernel", Communications in Nonlinear Science and Numerical Simulation 59 (2018), pp. 444–462. DOI: 10.1016/j.cnsns.2017.12.003
  • D. Baleanu, A. Fernandez, "A generalisation of the Malgrange–Ehrenpreis theorem to find fundamental solutions to fractional PDEs", Electronic Journal of Qualitative Theory of Differential Equations 15 (2017), pp. 1–12. DOI: 10.14232/ejqtde.2017.1.15
Projects
Conference Presentations
  • Jul 2019 “Models and classifications in fractional calculus", contributed talk, International Society for Analysis, its Applications and Computation 2019 (Aveiro, Portugal).
  • Jul 2019 “A general class of fractional-calculus operators and their applications", invited talk, International Istanbul Summer School in Applied Mathematics 2019 (Istanbul, Turkey).
  • Jul 2019 “Complex integrals in fractional calculus", contributed talk, International Conference on Computational Methods in Applied Sciences 2019 (Istanbul, Turkey).
  • Apr 2019 "Incomplete forms of fractional integrals and derivatives", contributed talk, International Conference on Computational Mathematics and Engineering Sciences 2019 (Antalya, Turkey).
  • Jul 2018 "Differintegration with respect to functions in fractional models involving Mittag-Leffler functions", contributed talk, International Conference on Fractional Differentiation and its Applications 2018 (Amman, Jordan).
  • Jul 2018 "Generalisation and reduction of fractional models", invited talk, International Conference on Fractional Differentiation and its Applications 2018 (Amman, Jordan).
  • Jun 2018 "A series formula for Prabhakar fractional operators", contributed talk, International Conference on Applied Mathematics in Engineering 2018 (Balikesir, Turkey).
  • Sep 2017 "Asymptotics to all orders of the Hurwitz zeta function", contributed talk, Number Theory Week 2017 (Poznań, Poland).
  • May 2017 "New properties of fractional derivatives defined using Mittag-Leffler kernel", contributed talk, International Conference on Recent Advances in Pure and Applied Mathematics 2017 (Ephesus, Turkey).
  • Jul 2016 "Explicit solutions to FPDEs via the Fokas method and fundamental solutions", contributed talk, International Conference on Fractional Differentiation and its Applications 2016 (Novi Sad, Serbia).
  • Aug 2015 "Fractional calculus and the Fokas method", contributed talk, Young Researchers in Mathematics 2015 (Oxford, UK).
  • Jul 2019 “Zeta functions expressed as fractional derivatives", invited talk, Seminar on Millennium Problems: Riemann Hypothesis, Institute of Mathematics, University of Santiago de Compostela, Spain.
  • Apr 2018 "Fractional PDEs, Novel Fractional Models, and Asymptotic Analysis of Zeta Functions", invited talk, Mathematics Department Seminar Series, Bilkent University, Ankara, Turkey.
  • Oct 2017 "Fractional Calculus and Analytic Number Theory", invited talk, Analysis and Applied Mathematics Seminar, Series, Çankaya University, Ankara, Turkey.
  • May 2016 "Constructing solutions to linear fractional-order PDEs", departmental seminar, Cambridge Analysts Knowledge Exchange, Faculty of Mathematics, University of Cambridge, UK.
  • May 2016 "Fractional PDEs", contribution to graduate seminar series, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK.
  • Nov 2012 "Introduction to Fractional Calculus", series of 1-hour talks, Faculty of Mathematics, University of Cambridge,UK.
  • Oct 2012 "Introduction to Fractional Calculus", invited talk, PDE Working Group Seminar, Imperial College London, UK.




EMU Websites